首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   775篇
  免费   110篇
  国内免费   30篇
化学   900篇
综合类   6篇
物理学   9篇
  2023年   6篇
  2022年   23篇
  2021年   35篇
  2020年   52篇
  2019年   38篇
  2018年   26篇
  2017年   27篇
  2016年   43篇
  2015年   41篇
  2014年   40篇
  2013年   52篇
  2012年   57篇
  2011年   34篇
  2010年   50篇
  2009年   50篇
  2008年   46篇
  2007年   50篇
  2006年   45篇
  2005年   37篇
  2004年   37篇
  2003年   45篇
  2002年   7篇
  2001年   6篇
  2000年   3篇
  1999年   12篇
  1998年   6篇
  1997年   10篇
  1996年   4篇
  1995年   9篇
  1994年   4篇
  1993年   4篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1985年   3篇
  1984年   2篇
  1980年   1篇
  1979年   2篇
排序方式: 共有915条查询结果,搜索用时 15 毫秒
21.
Lysocin E, a macrocyclic peptide, exhibits potent antibacterial activity against methicillin‐resistant Staphylococcus aureus (MRSA) through a novel mechanism. The first total synthesis of lysocin E was achieved by applying a full solid‐phase strategy. The developed approach also provides rapid access to the enantiomeric, epimeric, and N‐demethylated analogues of lysocin E. Significantly, the antibacterial activity of the unnatural enantiomer was comparable to that of the natural isomer, suggesting the absence of chiral recognition in its mode of action.  相似文献   
22.
Antimicrobial resistance and the shortage of novel antibiotics have led to an urgent need for new antibacterial drug leads. Several existing natural product scaffolds (including chelocardins) have not been developed because their suboptimal pharmacological properties could not be addressed at the time. It is demonstrated here that reviving such compounds through the application of biosynthetic engineering can deliver novel drug candidates. Through a rational approach, the carboxamido moiety of tetracyclines (an important structural feature for their bioactivity) was introduced into the chelocardins, which are atypical tetracyclines with an unknown mode of action. A broad‐spectrum antibiotic lead was generated with significantly improved activity, including against all Gram‐negative pathogens of the ESKAPE panel. Since the lead structure is also amenable to further chemical modification, it is a platform for further development through medicinal chemistry and genetic engineering.  相似文献   
23.
24.
Gram‐negative bacteria are an increasingly serious source of antibiotic‐resistant infections, partly owing to their characteristic protective envelope. This complex, 20 nm thick barrier includes a highly impermeable, asymmetric bilayer outer membrane (OM), which plays a pivotal role in resisting antibacterial chemotherapy. Nevertheless, the OM molecular structure and its dynamics are poorly understood because the structure is difficult to recreate or study in vitro. The successful formation and characterization of a fully asymmetric model envelope using Langmuir–Blodgett and Langmuir–Schaefer methods is now reported. Neutron reflectivity and isotopic labeling confirmed the expected structure and asymmetry and showed that experiments with antibacterial proteins reproduced published in vivo behavior. By closely recreating natural OM behavior, this model provides a much needed robust system for antibiotic development.  相似文献   
25.
We report the synthesis of monomers for atom-transfer radical polymerization (ATRP) and a reversible addition-fragmentation chain transfer (RAFT) agent bearing trifluoroborate iminiums (TIMs), which are quantitatively converted into potassium acyltrifluoroborates (KATs) after polymerization. The resulting KAT-containing polymers are suitable for rapid amide-forming ligations for both post-polymerization modification and polymer conjugation. The polymer conjugation occurs rapidly, even under dilute (micromolar) aqueous conditions at ambient temperatures, thereby enabling the synthesis of a variety of linear and star-shaped block copolymers. In addition, we applied post-polymerization modification to the covalent linking of a photocaged cyclic antibiotic (gramicidin S) to the side chains of the KAT-containing copolymer. Cellular assays revealed that the polymer–antibiotic conjugate is biocompatible and provides efficient light-controlled release of the antibiotic on demand.  相似文献   
26.
27.
28.
The total and semi‐synthesis of 13 new macrolactones derived from thuggacin, which is a secondary metabolite from the myxobacterium Sorangium cellulosum, are reported. The thuggacins have attracted much attention due to their strong antibacterial activity, particularly towards Mycobacterium tuberculosis. This study focuses on 1) thuggacin derivatives that cannot equilibrate by transacylation between the three natural thuggacins A–C, 2) the roles of the thiazole ring, and 3) the hexyl side chain at C2. Semi‐synthetic O‐methylation at C17 suppressed the transacylations without a substantial loss of antibacterial activity. Exchanging the C17–C25 side chain for simplified hydrophobic chains led to complete loss of antibacterial activity. Exchange of the thiazole by an oxazole ring or removal of the hexyl side chain at C2 had no substantial effect on the biological properties.  相似文献   
29.
The antibiotic trimethoprim [5‐(3,4,5‐trimethoxybenzyl)pyrimidine‐2,4‐diamine] was cocrystallized with glutarimide (piperidine‐2,6‐dione) and its 3,3‐dimethyl derivative (4,4‐dimethylpiperidine‐2,6‐dione). The cocrystals, viz. trimethoprim–glutarimide (1/1), C14H18N4O3·C5H7NO2, (I), and trimethoprim–3,3‐dimethylglutarimide (1/1), C14H18N4O3·C7H11NO2, (II), are held together by three neighbouring hydrogen bonds (one central N—H...N and two N—H...O) between the pyrimidine ring of trimethoprim and the imide group of glutarimide, with an ADA/DAD pattern (A = acceptor and D = donor). These heterodimers resemble two known cocrystals of trimethoprim with barbituric acid and its 5,5‐diethyl derivative. Trimethoprim shows a conformation in which the planes of the pyrimidine and benzene rings are approximately perpendicular to one another. In its glutarimide coformer, five of the six ring atoms lie in a common plane; the C atom opposite the N atom deviates by about 0.6 Å. The crystal packing of each of the two cocrystals is characterized by an extended network of hydrogen bonds and contains centrosymmetrically related trimethoprim homodimers formed by a pair of N—H...N hydrogen bonds. This structural motif occurs in five of the nine published crystal structures in which neutral trimethoprim is present.  相似文献   
30.
Overuse and misuse of antibacterial drugs has resulted in bacteria resistance and in an increase in mortality rates due to bacterial infections. Therefore, there is an imperative necessity of new antibacterial drugs. Bio-organometallic derivatives of antibacterial agents offer an opportunity to discover new active antibacterial drugs. These compounds are well-characterized products and, in several examples, their antibacterial activities have been studied. Both inhibition of the antibacterial activity and strong increase in the antibiotic activity of the parent drug have been found. The synthesis of the main classes of bio-organometallic derivatives of these drugs, as well as examples of the use of structure–activity relation (SAR) studies to increase the activity and to understand the mode of action of bio-organometallic antimicrobial peptides (BOAMPs) and platensimicyn bio-organometallic mimics is presented in this article.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号